97 research outputs found

    Electrical transport studies of quench condensed Bi films at the initial stage of film growth: Structural transition and the possible formation of electron droplets

    Full text link
    The electrical transport properties of amorphous Bi films prepared by sequential quench deposition have been studied in situ. A superconductor-insulator (S-I) transition was observed as the film was made increasingly thicker, consistent with previous studies. Unexpected behavior was found at the initial stage of film growth, a regime not explored in detail prior to the present work. As the temperature was lowered, a positive temperature coefficient of resistance (dR/dT > 0) emerged, with the resistance reaching a minimum before the dR/dT became negative again. This behavior was accompanied by a non-linear and asymmetric I-V characteristic. As the film became thicker, conventional variable-range hopping (VRH) was recovered. We attribute the observed crossover in the electrical transport properties to an amorphous to granular structural transition. The positive dR/dT found in the amorphous phase of Bi formed at the initial stage of film growth was qualitatively explained by the formation of metallic droplets within the electron glass.Comment: 7 pages, 6 figure

    Water availability, root depths and 2017 crop yields

    Get PDF
    During 2016 and 2017, June-July precipitation was below normal in many parts of Iowa creating midseason concerns about potential yield loss due to water stress. However, these concerns were not realized. In contrast, 2016 and 2017 crop yields over-performed yields obtained in many years with average of above average June-July precipitation. In Iowa, deep root systems, high soil water storage capacity, and shallow water tables are common explanations for high yields in years with below normal precipitation. How deep can roots grow? How much does groundwater contribute to the yields? To answer these questions and more, the Forecast and Assessment of Cropping sysTemS (FACTS) project was established in 201

    Predicting crop yields and soil‐plant nitrogen dynamics in the US Corn Belt

    Get PDF
    We used the Agricultural Production Systems sIMulator (APSIM) to predict and explain maize and soybean yields, phenology, and soil water and nitrogen (N) dynamics during the growing season in Iowa, USA. Historical, current and forecasted weather data were used to drive simulations, which were released in public four weeks after planting. In this paper, we (1) describe the methodology used to perform forecasts; (2) evaluate model prediction accuracy against data collected from 10 locations over four years; and (3) identify inputs that are key in forecasting yields and soil N dynamics. We found that the predicted median yield at planting was a very good indicator of end‐of‐season yields (relative root mean square error [RRMSE] of ∼20%). For reference, the prediction at maturity, when all the weather was known, had a RRMSE of 14%. The good prediction at planting time was explained by the existence of shallow water tables, which decreased model sensitivity to unknown summer precipitation by 50–64%. Model initial conditions and management information accounted for one‐fourth of the variation in maize yield. End of season model evaluations indicated that the model simulated well crop phenology (R2 = 0.88), root depth (R2 = 0.83), biomass production (R2 = 0.93), grain yield (R2 = 0.90), plant N uptake (R2 = 0.87), soil moisture (R2 = 0.42), soil temperature (R2 = 0.93), soil nitrate (R2 = 0.77), and water table depth (R2 = 0.41). We concluded that model set‐up by the user (e.g. inclusion of water table), initial conditions, and early season measurements are very important for accurate predictions of soil water, N and crop yields in this environment

    Development of an in-vitro model system to investigate the mechanism of muscle protein catabolism induced by proteolysis-inducing factor

    Get PDF
    The mechanism of muscle protein catabolism induced by proteolysis-inducing factor, produced by cachexia-inducing murine and human tumours has been studied in vitro using C2C12 myoblasts and myotubes. In both myoblasts and myotubes protein degradation was enhanced by proteolysis-inducing factor after 24 h incubation. In myoblasts this followed a bell-shaped dose-response curve with maximal effects at a proteolysis-inducing factor concentration between 2 and 4 nM, while in myotubes increased protein degradation was seen at all concentrations of proteolysis-inducing factor up to 10 nM, again with a maximum of 4 nM proteolysis-inducing factor. Protein degradation induced by proteolysis-inducing factor was completely attenuated in the presence of cycloheximide (1 μM), suggesting a requirement for new protein synthesis. In both myoblasts and myotubes protein degradation was accompanied by an increased expression of the α-type subunits of the 20S proteasome as well as functional activity of the proteasome, as determined by the ‘chymotrypsin-like’ enzyme activity. There was also an increased expression of the 19S regulatory complex as well as the ubiquitin-conjugating enzyme (E214k), and in myotubes a decrease in myosin expression was seen with increasing concentrations of proteolysis-inducing factor. These results show that proteolysis-inducing factor co-ordinately upregulates both ubiquitin conjugation and proteasome activity in both myoblasts and myotubes and may play an important role in the muscle wasting seen in cancer cachexia

    Cross-sectional associations between multiple lifestyle behaviors and health-related quality of life in the 10,000 steps cohort

    Get PDF
    Background: The independent and combined influence of smoking, alcohol consumption, physical activity, diet, sitting time, and sleep duration and quality on health status is not routinely examined. This study investigates the relationships between these lifestyle behaviors, independently and in combination, and health-related quality of life (HRQOL). Methods: Adult members of the 10,000 Steps project (n = 159,699) were invited to participate in an online survey in November-December 2011. Participant socio-demographics, lifestyle behaviors, and HRQOL (poor self-rated health; frequent unhealthy days) were assessed by self-report. The combined influence of poor lifestyle behaviors were examined, independently and also as part of two lifestyle behavior indices, one excluding sleep quality (Index 1) and one including sleep quality (Index 2). Adjusted Cox proportional hazard models were used to examine relationships between lifestyle behaviors and HRQOL. Results: A total of 10,478 participants provided complete data for the current study. For Index 1, the Prevalence Ratio (p value) of poor self-rated health was 1.54 (p = 0.001), 2.07 (p≤0.001), 3.00 (p≤0.001), 3.61 (p≤0.001) and 3.89 (p≤0.001) for people reporting two, three, four, five and six poor lifestyle behaviors, compared to people with 0-1 poor lifestyle behaviors. For Index 2, the Prevalence Ratio (p value) of poor self-rated health was 2.26 (p = 0.007), 3.29 (p≤0.001), 4.68 (p≤0.001), 6.48 (p≤0.001), 7.91 (p≤0.001) and 8.55 (p≤0.001) for people reporting two, three, four, five, six and seven poor lifestyle behaviors, compared to people with 0-1 poor lifestyle behaviors. Associations between the combined lifestyle behavior index and frequent unhealthy days were statistically significant and similar to those observed for poor self-rated health. Conclusions: Engaging in a greater number of poor lifestyle behaviors was associated with a higher prevalence of poor HRQOL. This association was exacerbated when sleep quality was included in the index. © 2014 Duncan et al

    The ABC130 barrel module prototyping programme for the ATLAS strip tracker

    Full text link
    For the Phase-II Upgrade of the ATLAS Detector, its Inner Detector, consisting of silicon pixel, silicon strip and transition radiation sub-detectors, will be replaced with an all new 100 % silicon tracker, composed of a pixel tracker at inner radii and a strip tracker at outer radii. The future ATLAS strip tracker will include 11,000 silicon sensor modules in the central region (barrel) and 7,000 modules in the forward region (end-caps), which are foreseen to be constructed over a period of 3.5 years. The construction of each module consists of a series of assembly and quality control steps, which were engineered to be identical for all production sites. In order to develop the tooling and procedures for assembly and testing of these modules, two series of major prototyping programs were conducted: an early program using readout chips designed using a 250 nm fabrication process (ABCN-25) and a subsequent program using a follow-up chip set made using 130 nm processing (ABC130 and HCC130 chips). This second generation of readout chips was used for an extensive prototyping program that produced around 100 barrel-type modules and contributed significantly to the development of the final module layout. This paper gives an overview of the components used in ABC130 barrel modules, their assembly procedure and findings resulting from their tests.Comment: 82 pages, 66 figure

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore